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ABSTRACT A theoretical analysis is presented of the change in membrane
potential produced by current supplied by a microelectrode inserted just under
the membrane of a spherical cell. The results of the analysis are presented in
tabular and graphic form for three wave forms of current: steady, step function,
and sinusoidal. As expected from physical reasoning, we find that the membrane
potential is nonuniform, that there is a steep rise in membrane potential near
the current microelectrode, and that this rise is of particular importance when
the membrane resistance is low, or the membrane potential is changing rapidly.
The effect of this steep rise in potential on the interpretation of voltage meas-
urements from spherical cells is discussed and practical suggestions for mini-
mizing these effects are made: in particular, it is pointed out that if the current
and voltage electrodes are separated by 600, the change in membrane potential
produced by application of current is close to that which would occur if there
were no spatial variation of potential. We thus suggest that investigations of
the electrical properties of spherical cells using two microelectrodes can best be
made when the electrodes are separated by 60° .

The electrical properties of spherical cells are often investigated by inserting
two microelectrodes just under the cell membrane. One electrode, the current
or source electrode, is used for passing current; the other, the voltage or re-
cording electrode, for recording potential (Fig. 1). It is usual to assume that
the change in membrane potential produced by passing current is quite inde-
pendent of the angular separation of the electrodes (Eccles, 1957; Rall, 1959,
has further references; Hellerstein, 1968) since the radii of spherical cells are
in general much smaller than the length constant of cylindrical cells. That is to
say, if a cylindrical cell had the same diameter and were made of the same
material as a spherical cell, the potential along the cylindrical cell would not
change appreciably in distances comparable to the radius of the spherical cell.
However, recent analyses of the three-dimensional spread of current near a
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point source (in practice, a source very small compared to the dimensions of
the cell) in a cylindrical cell (Falk and Fatt, 1964; Eisenberg, 1967; Adrian,
Costantin, and Peachey, 1969; Eisenberg and Johnson, 1970) as well as in a
thin plane cell and a thick plane cell (Eisenberg and Johnson, 1970) have
shown that, sufficiently near a point source, there is a steep rise in true trans-
membrane potential not predicted by the usual one-dimensional theory. The
physical origin of this steep rise in potential is that in the neighborhood of a
point source, the current density is very high. Since the resistance of this region
is not zero (indeed the resistance of this region is very high because of its small
dimensions) the potential near the source must be very high. This phenome-
non is analogous to the familiar "convergence resistance" (that is, the re-
sistance associated with the flow of current from a small source imbedded in
an infinite resistive solid) although the presence of a high resistance membrane
greatly complicates the analysis of the biological case. Since the physical cause
of this steep rise in potential lies in the size and shape of the source, not the
over-all shape of the membrane (provided the membrane is reasonably smooth
near the source), a similar phenomenon would be expected to occur in a
spherical cell. Indeed, in an early publication Rall (1953) mentioned that
such a steep rise (or more precisely, a "singularity") in membrane potential
occurs in one of the solutions of an equation for the membrane potential of a
spherical cell.

It thus seemed of interest to reinvestigate quantitatively the assumption of
the uniformity of membrane potential in a spherical cell, particularly looking
for deviations in the region of the point source. Our investigation was made
for three types of source; a steady source, a step function source, and a sinu-
soidal source. The results of these computations are presented in both tabular
and graphic form. The details of the analysis for each case can be found in
the appropriate Appendix.

Several conclusions from our analysis may be of interest to the general
reader: (a) There is a striking nonuniformity of membrane potential near the
point source, and this nonuniformity becomes of particular importance when
the membrane potential is changing rapidly or when the membrane resistance
is low. (b) A simple equivalent circuit describes, to a first approximation, the
effects of the nonuniformity of membrane potential. (c) There is a region of
the cell (a ring situated at about 600 from the source) in which the membrane
potential is close to the membrane potential of a cell of uniform potential.
Measurements made with this angular separation between the current source
and voltage electrode can be interpreted, at least to a first approximation,
using the usual equations for an isopotential cell. Thus, it seems reasonable to
recommend that experimental measurements of the electrical properties of
spherical cells be made with an electrode separation of about 60 °.
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RESULTS

The precise problem we wish to solve is the following. What is the change in
membrane potential of a spherical cell when a current is applied to the cell
from a point source' just under the membrane, assuming the external medium
remains isopotential (Fig. 1)? A solution to the problem can be found from
Hellerstein (1968) or Carslaw and Jaeger (1959) and can be considerably
simplified as shown in Appendix 1. We will first present the steady-state solu-
tion and then show how this can be generalized easily to the transient solution
for a step of current, or the solution for a steady sinusoidal excitation.

FIGURE 1. A schematic draw-
ing of a spherical cell with two
microelectrodes inserted just
under the membrane. The cell
radius is a (cm); the angular
separation between the elec-
trodes is 0 (degrees or radians);
and the curvilinear separation
of the electrodes, measured at
the circumference of the cell,
is S (cm).

Steady-State Solution

The steady-state solution can be written as

vm = 4- [ ° - 2a/A}{1 +- (a/A)D - (a/A)2E} ± (a/A) csc /21 ( I )

where

D = n csc2 0/2
1 ± csc 0/2

E0 = P,(cos) n = 1,2,3,

1 The approximation inherent in describing the microelectrode source as a point is of little signifi-
cance. An analysis of the solution for a disc source (E. Engel and R. S. Eisenberg, unpublished data)
shows that, as might be expected on physical grounds, when the diameter of the current source is a
small fraction of the cell circumference, the spatial variation of potential is substantially the same as
that described here. Even when such is not the case, the qualitative features of the spatial variation
of potential are similar to those described here.
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and where Vm is the membrane potential; i is the current applied; a is the
radius of the spherical cell (units: cm), R, is the resistance of 1 cm2 of mem-
brane (units: ohm-cm'), Ri is the volume resistivity (units: ohm-cm) of the
cytoplasm, the ratio of these quantities is called the generalized space constant2

(that is, Rm/R = A; units: cm), 0 is the angular separation between the elec-
trodes (an angular separation of 0 degrees corresponds to a curvilinear separa-
tion of S = a07r/180 0.175 a) and P, is a Legendre polynomial
(Abramowitz and Stegun, 1964). It is shown in Appendix 1 that this solution,
while not exact, is sufficiently accurate under physiological conditions. Even
under worst case conditions when the space constant is twice the radius, the
total error in equation (1) is less than 2.2% for all angles. It is interesting to
note that, except for a scale factor, equation (1) depends on only two param-
eters, the angular separation 0, and the ratio of radius to generalized space
constant a/A.

Table I and Fig. 2 give the values of the functions D, Eo, and csc 0/2. It can
be seen that for small angular separations and small values of a/A the domi-
nant term of equation (1) is (a/A) csc 0/2 and thus an approximate form of
the solution is

V.- -~ {I + (a/A) csc0/2 = - + i csc /2 (3)z 0 4ra2 4ra2 47ra

in which the second term has the units of resistance and will later be called
R, (Fig. 6). With Table I it is a simple matter to compute the effect on mem-
brane potential of the three-dimensional spread of current. One determines
the value of the generalized space constant A appropriate to the problem;
the angular separation 0 of the source and recording electrode; and the radius
a of the cell. Then using equation (1) and the values of D, Eo, and csc 0/2
given in Table I, one can calculate the potential expected at the tip of the
voltage electrode.

It is useful to analyze equation (1) in another way. If one remembers that
the expression for the membrane potential in an isopotential cell (that is, a
cell in which the voltage gradient produced by the three-dimensional spread
of current is of no significance) is Vm = iR,/4ira2 , then we see that the full
three-dimensional solution consists of the isopotential expression multiplied by
a correction factor. In other words this correction factor is the ratio of the
potential predicted by three-dimensional theory to that predicted by isopo-

2 It should be pointed out that in this paper the symbol A refers only to the DC generalized space
constant. That is to say, A is identical to R,/R i and is entirely independent of capacity current and
thus time. In the qualitative analysis of time-dependent phenomena it is useful to introduce a gener-
alized frequency-dependent space constant (see Eisenberg and Johnson, 1970, p. 59) but this is
possible here only to the limited extent that equation (3) is an adequate approximation. The reader
should be warned that the generalized space constant A is not analogous to the length constant
X = [aR,/2Ri]l defined for long cylindrical cells.
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tential theory and thus measures the fractional error in the isopotential expres-
sion. The correction factor depends only on the angular separation and the
ratio of the radius to space constant. Table II presents values of this correction
factor for a wide variety of "space" constants and angular separations. The
column headed 60° is set in boldface type since for this electrode separation

TABLE I

THE MEMBRANE POTENTIAL IN A SPHERICAL
CELL INCLUDING THE EFFECTS OF THE

THREE-DIMENSIONAL SPREAD OF CURRENT

V. = ioI - 2a/A}II + (a/A)D - (/A)'EoI + (a/A)cc/2]
4iasI 

0

0
5

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

D

o

3.090
2.356
1.591
1.121
0.779
0.509
0.288
0.103

-0.054
-0.188
-0.302
-0.399
-0.480
-0.547
-0.600
-0.641
-0.670
-0.687
-0.693

1.64
1.55
1.45
1.24
1.03
0.82
0.61
0.41
0.23
0.05

-0.11
-0.25
-0.38
-0.50
-0.60
-0.68
-0.74
-0.79
-0.81
-0.82

Co

22.926
11.474
5.759
3.864
2.924
2.366
2.000
1.743
1.556
1.414
1.305
1.221
1.155
1.103
1.064
1.035
1.015
1.004
1.000

A is defined as the ratio of the membrane resistance (ohm-cm 2)
to the internal resistivity (ohm-cm); i.e., A = R/Ri .
a is the cell radius.
0 is the angular separation of electrodes.
The computation was carried to enough figures to ensure that
the last significant figure is correct.

the correction term is negligible for all values of a/A considered. Figs. 3 and 4
are graphical representations of the same data. It is clear from these plots that
the correction factor becomes significant when a/A is large and/or the elec-
trode separation is small. For resting values of the membrane resistance (that
is for R, of the order of a few thousand ohm-cm2) and for cell radii in the usual
range (from say 0.05 to 0.005 cm) the radius is small compared to the space

740

Eo



R. S. EISENBERG AND E. ENGEL Spatial Variation of Membrane Potential

A Vm (-2AXI+AD -(A 2 CSC)

Rmn

Ri

60

FIGURE 2. Graphs of the size of the various terms in the equation for the membrane
potential at different values of electrode separation. The upper graph (A) is a linear
plot showing the general shape of the curves over the whole range of angular separa-
tion 0. The lower graph (B) is a plot of the same results with a logarithmic ordinate and
over a smaller range of angles.

constant (a/A is around 10- 3) and the effect of the three-dimensional spread
of current is small even at electrode separations of 5° . By extrapolation (and
indeed by analysis) it can be seen, however, that at sufficiently small separa-
tions the correction term is important. Thus, when a single electrode bridge
or double-barreled electrodes are used (Eisenberg and Johnson, 1969),3 the

3 Note Added in Proof We have recently derived a precise and surprisingly simple expression for
the voltage recorded by a single electrode bridge.
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FIGURES 3 AND 4. Plots of the correction factor (ordinate) for different conditions of
interest. In Fig. 3 the abscissa is the angular separation between electrodes and each
curve is labeled with the appropriate value of a/A. In Fig. 4 the abscissa is the value
of a/A (on a logarithmic scale) and each curve is labeled with the appropriate value
of 0.

correction would be expected to be particularly important. Furthermore, we

see that whenever the space constant is comparable to the cell radius the

correction factor is significant over a wide range of angles. This latter condi-

tion occurs, in effect, when rapidly changing currents are considered, whether
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they be sinusoidal or of other shape (see below). Finally, under many condi-
tions of physiological interest the membrane resistance itself drops to quite low
values, sometimes low enough so that the space constant is comparable to the
cell radius. It is under these conditions of very small electrode separation,
rapidly changing voltages, or low membrane resistance that the correction for
the three-dimensional spread of current becomes important.

Transient Solution

In Appendix 2 the transient solution of the three-dimensional problem for a
step function of current applied at time t = 0 is given. It is shown there that
the terms in the solution which express the dependence of the potential on
angular position (the three-dimensional correction terms) are established very
quickly compared to the terms which describe the change in potential with
time for an isopotential cell: indeed, the time constant which roughly describes
the time dependence of the three-dimensional fields is quicker (i.e. smaller)
than the membrane time constant RmCm by a factor of (A/a) + 1.

Thus, at times of physiological interest the response to a step function of
current is described by (see equation (41) in Appendix 2)

V--- = - ( -- e- t mcm) + (2a/A) 1 Pn (cos 0) ( 4 )
4rwa2 . .,-,n + a/A

which can be simplified, as shown in Appendix 1, to

V. = I4r {L(t) + (a/A, 0) (54(a2 5

where r4(a/A, ) determines the spatial variation of potential

i = I - 2a/A}{1 + (a/A)D - (a/A)2Eo} + [(a/A)csc 0/2] - 1 (6)

and L(t) determines the time response of the cell

L(t) = 1 - e-tlRCm (7)

Note that this term is precisely the same as that which describes the response
of an isopotential cell to a step function of current. The numerical value of the
term, ~4(a/A, 0) the three-dimensional correction term, can be determined by
subtracting one from the correction factors previously given (see Table II and
Fig. 3). While at the times of interest the absolute value of the three-dimen-
sional term 4 is independent of time, the relative importance of this term varies
greatly with time depending on the size of the isopotential term L(t). Thus,
the relative importance is greatest at short times when the isopotential term is
small. A plot of the relative importance of the three-dimensional term (that
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is a plot of p/L) is given in Fig. 5, where an inset shows the wave form of the
time response and a schematic definition of 4,6 and L. It can be seen that the
three-dimensional effect is of significance primarily for small times and small
angles. Note that for angular separations of around 600 the three-dimensional
term is very small at almost all times, and thus cannot be conveniently shown
in this log-log plot.

The curves presented in Fig. 5 B would be directly applicable to a cell of

% %

t/RmCm t/RmCm

FIGURE 5. Plots showing the relative importance of the spatial term (0) compared
to the isopotential term L(t) as a function of the time following the application of a
step function of current. A schematic definition of 1 and L(t) is shown in the upper right-
hand quadrant of the figure. A precise definition is found in equations (6) and (7). The
left-hand plot (A) was computed for an electrode separation of 50, the values of a/A
being indicated beside the appropriate curve. The right-hand plot (B) was computed
for a/A = 0.0005, the value of 0 being indicated for each curve. For values of the elec-
trode separation near 600 the value of 4/L is so small that it cannot be shown on the
logarithmic ordinate.

membrane resistance 2000 ohm-cm2 , internal resistance 200 ohm-cm (thus
A = 10 cm), and radius 50 #u. If the membrane capacitance were 2 uF/cm2 ,
RC, = 4 msec. Thus, at 40 /isec after the application of a pulse of current,
and at an electrode separation of 50, the spatial variation of potential produces
a (roughly) 100% effect, at 400 ,sec a (roughly) 10% effect.

DISCUSSION

General Conclusions and Relation to Previous Results

The general conclusion from our analysis is that the change in membrane
potential in a spherical cell produced by current applied from a microelectrode
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lying just under the membrane is quite uniform around most of the cell, with
striking deviations in the vicinity of the microelectrode source. These devia-
tions are particularly important under conditions where there is a high current
density crossing the membrane, that is when the membrane resistance is low
or during rapid changes in membrane potential.

It is now necessary to discuss why this nonuniformity of potential has been
overlooked by previous investigators (however, see Rall, 1953). The solution
to a similar but somewhat more general problem has been previously found by
Hellerstein (1968) and Eisenberg and Johnson (1970), and as shown in Ap-
pendix 1 these solutions coincide at least for the particular case which we
consider here, namely with the current electrode just under the membrane.
Essentially, the reason that our interpretation of the solutions differs is that we
have quantitatively evaluated the solution in the region near the point source,
and investigated the convergence properties of the solution in that region.
Thus, while the second term in the infinite series (our equation (10) or equa-
tion (98), p. 376 of Hellerstein, 1968) is very much smaller than the first
term, (even at zero electrode separation), the third (and higher) terms are ap-
proximately equal to the second term and thus when sufficient terms are in-
cluded the first term is no longer dominant. The above statement is simply a
qualitative way of stating that at zero angular separation the infinite series
defining the potential does not converge. It is easy to prove this point directly

remembering that P,(1) = 1 and that the sum E (l/n) does not converge;
nit is more difficult to show that the other form of the solution (namely, our

it is more difficult to show that the other form of the solution (namely, our
equation [8]) does not converge, but this can be done. The reason for this
failure in convergence and thus, in physical language, the steep rise in poten-
tial near the point source, lies in the nature of a three-dimensional point
source: a point source forces a finite current to flow through an infinite re-
sistance and thus requires an infinite potential (see, for example, Table 1-1,
p. 12 of Panofsky and Phillips, 1955).

Effect of Electrode Depth

We have not been able to evaluate the change in membrane potential pro-
duced by a current injected from a microelectrode at an arbitrary depth
within the cell. The solution derived by Eisenberg and Johnson (1970) is im-
practical in this case since it converges exceedingly slowly, and we have not
been able to simplify the solution with a theorem analogous to that developed
in Appendix 1. Nonetheless it seems quite clear that the essential result of our
analysis, namely the existence of a steep rise in membrane potential near a
point source, is true even if the source is not immediately under the membrane
but is somewhat deeper in the cell. The reason for this conclusion is as follows.
Except perhaps right at a source the functions which describe any electric
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field are continuous functions of distance and have continuous derivatives up
to and including at least the second order (this statement is implied by the
fact that away from a source an electric field can be described by Laplace's
equation [equation 34]). Thus, as a source is moved from just under the mem-
brane deeper into a cell the membrane potential does not change abruptly.

The above abstract reasoning is consistent with the results computed for a
cylindrical cell by Eisenberg and Johnson (1970, Pt. A, sect. IV.4) for a prob-
lem analogous to ours. They showed that the qualitative features of the spread
of potential were the same whether the source was located at r = a or at
r = 0.75 a. Thus, even when the source is quite deep within the cell there is a
steep rise in true transmembrane potential in the vicinity of the electrode.

Physiological Implications4

The discussion of Eisenberg and Johnson (1970, Pt. B, sect. 1, pp. 46-56) con-
cerning the physiological implications of the steep rise in membrane potential
near a point source of current is applicable to the spherical cell. In particular,
the three-dimensional effect is important in understanding (a) the nature of
the artifacts produced when potential is recorded with the same microelec-
trode that is used for passing current, (b) the artifacts associated with the use
of double-barreled microelectrodes, (c) the difficulties involved whenever one
seeks to control the membrane potential of a cell with current supplied from a
microelectrode.

It is clear that in routine measurements of the electrical properties of spher-
ical cells the electrodes should be placed at an angular separation of around
60°; this corresponds to a curvilinear separation of 1.05 a where a is the cell
radius. With this separation under conditions of physiological interest, there
is almost no deviation of potential from that predicted for an isopotential cell.

When the electrode separation is small enough so that the three-dimensional
correction is significant, the full equation (1) can be approximated to some
extent by equation (3). Thus, the major effect of the three-dimensional spread
of current is to produce an additional potential the absolute size of which is
independent of the membrane resistance or impedance but whose relative
importance does depend on the membrane properties. It should be empha-
sized that this extra potential represents a component of the true transmem-
brane potential and does not represent an internal potential drop in the re-
sistive medium filling the cell. We have seen that the variation in membrane
potential drop associated with the three-dimensional spread of current is
established very quickly (with a time constant of roughly RiCa = R,C, { a/A },
see equation [40]) compared to other changes of membrane potential with
time. Thus, as a first approximation the main effect of the three-dimensional

4 Note Added in Proof Two papers (Rall, W, 1969. Biophys. J. 9:1483, 1509) have recently ap-
peared which discuss this topic.
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Isopotenfial General

Cmx47o2 1 Rm True Rm Cmx4oa2

4T0 t 4jra2 Tronsmembroane r2

CmX~r02O 1 Ryf (9)

Cell Radius a, Angular Separation of Electrodes 8

FIGURE 6. The equivalent circuit of the spherical cell. This circuit is most useful in a
qualitative sense, since R, has physical meaning only when the electrode separation is
small and the space constant is large. More precisely, this circuit is useful when the
approximate equation (3) is satisfactory.

spread of current is to produce an additional potential drop across the mem-
brane, this potential drop being proportional to current and independent of
time. In other words the main effect of the three-dimensional spread of current
can be represented by modifying the equivalent circuit of the spherical cell to
include a resistance Rp (equivalent to the second term in equation [3]) in
series with the usual parallel arrangement of R, and Cm (Fig. 6). The size of this

equivalent resistance is given by the various tables and figures in the Results
section. It should be pointed out that the resistance Rp has limited physical
significance, in that it is a useful description only to the extent that the ap-
proximate equation (3) is valid, that is only when the angular separation
between electrodes is small and when the generalized space constant A is large.

APPENDIX 1

Part 1. Derivation of the Solution

The full solution to the problem of the membrane potential in a spherical cell, the
source of current being a point lying just under the membrane, has been given by
Hellerstein (1968) and determined by Eisenberg and Johnson (1970, Pt. A, sect. V)
by an integration of a solution presented in Carslaw and Jaeger (1959, p. 382).6 The
solution derived by Eisenberg and Johnson is written here in terms of cylindrical
Bessel functions Jn + 1/2 and Legendre polynomials P, (see Abramowitz and Stegun,
1964).

V i Ri (2n + )P. (cos ) (a/A 1
2ra ,n-o .- 1 (a/A -,)2 + 0.2 ( + )2

where P, are the positive roots, numbered in order of increasing magnitude, of

(a/A - )J + (I8) + J' + (.) = 0 (9)

A prime denotes the derivative.

5 The corresponding differential equation and boundary condition are given here in Appendix 2,

equations (32) and (33).
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The solution given by Hellerstein (1968) includes the effects of external resistance
and different radial locations of electrodes, but can be specialized to our case by
setting r = a, t = oo, and using our names of variables

V i= R , n + i p (cos 0) (10)
2ra n- n + a/A

The first part of this Appendix is devoted to showing that these two solutions coin-
cide, the second part of the Appendix then shows how to write the solution in much
simpler form.6

It is easy to see that equations (8) and (10) are identical if and only if

1 1

.1 8,2 + h2 _ 2 2(h + v)

where h is defined as a/A - ½ and v (any real number) is written to denote the
order of Bessel function (which in equation (8) was written as n + 3). It was gratify-
ing to find a statement of this relation in Lamb (1884, footnote, p. 273) but the
tantalizing absence of a proof made the following derivation necessary. Full details
of the proof are given but we refer the reader to works on complex analysis (for
example, Whittaker and Watson, 1927; Markushevich, 1965) for the necessary back-
ground material.

Our plan of attack will be to consider a function F(z) of Bessel functions closely
related to equation (9), namely

F(z) = zJ(z) + , (z) 12)

Note that F(z) has a simple power series expansion which can be derived from the
expansions of J,(z) and JI,(z) (Whittaker and Watson, 1927, sect. 17.2):

F(z) = ( +) + h) --_ Z 22 + +2)
2,r' + 1) 2(2 + 2) (13)

+ Z4 4+v +h +
(2)(4)(2v + 2)(2v + 4) + 

Definitions, properties, and tables of the gamma function r(z) can be found in
Abramowitz and Stegun (1964).

We now expand this function F(z) into an infinite product in order to determine
the roots f and to derive the desired sum. Since the function F(Z) is well-behaved
(that is, it can be differentiated at every point in the complex plane) and has simple
(that is, not repeated) roots at the points , it can be written as a Weierstrass infinite

6 The following proof is presented in detail because we were originally skeptical of the equality of
the two solutions and felt that a proof was necessary. Moreover, the following proof uses a powerful
method which is not found in standard texts and may be useful.
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product (Whittaker and Watson, 1927, sect. 7.5) of the form

F(z) = F(0)[exp{zF'(0)/F(0)}] II {(1l - z/1)e"l} (14)

and we have used the standard notation for infinite products (Markushevitch, 1965,
p. 334).

IIfs(z) = fxi(z)z)f (z) ... (15)
a-i

Fortunately, in our case this expression can be considerably simplified. We note that
in the series expansion of F(z) (equation [13]) all the powers of z are even. Thus, if
# is a root of equation (12) so is -A also a root. Then, every factor eP in the infinite
product (14) is multiplied by a factor e- I/1 and thus becomes unity. Similarly, the
factors (1 - z/#) and (1 + z/l) multiply to give a perfect square and the infinite
product expansion takes the form

F(z) = F(O)[exp{zF'(O)/F(0) }] I (1 - 2/,2) (16)
8s1

where the product is taken over all the positive roots 3,, numbered according to
size /1 < 2 < -·-. We can evaluate the first two factors in this equation from the
power series expansion (13). Thus

lim F(z) - + h and lim F'(Z) = 0 ( 17)
· 0 2'r(' + 1) ,-o F(z)

So we have as the final simplified form of the product expansion

F(z) z = h _ v+h I (1 - z2/ 2) (18)

In order to convert the infinite product into a sum we take the logarithm of both
sides and then differentiate,

J' + (l/z)(l + h)J: - 2
- Z_ - z (19)

zJ, + hJ, Z 2

This relation is beginning to look promising since it gives a closed form expression
for an infinite sum involving the roots , . However, a few more manipulations are
necessary to put the series in the form we seek. We notice that for a special value of
z namely

= zo - (v - h2)t (20)

the infinite series in equation (19) takes on the form desired (see equation [11]).
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Thus, if we let z = zo in both sides of equation (19), we have

2 v J,' (zo) + (I/zo)J(zo) + (h/zo)J, () (21)

,-1 : - v2 + h2 Zo J() + hJ()4 z. J(z) + U, (z.)

Note that this equation gives a closed form expression for the infinite sum. But the
right-hand side of this equation can be considerably simplified by using the differen-
tial equation which defines Bessel functions

J + (/z)J + (1 - v2/z 2)J, = 0 (22)

If this equation is evaluated at z = zo we have

J '(Zo) + (l/zo)J(zo) = (h2/z,)J,(zo) (23)

Then, we substitute equation (23) into equation (21)

2 __1 P (h/z!)[zoJ(zo) + h,(z)] 24
,-1 8 - v2 + h2 Zo zoJ;(zo) + hJ,(zo)

cancelling and using equation (20),

1 v-h 1
2 _E_ (25)_-1 ~ _ v + h2

P2 _ h2 + h

This completes our proof of equation (11) and establishes the identity of the two
solutions (8) and (10).

Part 2. Simplification of the Solution and Computational Methods

The solution presented above, while correct, is quite impractical. Since it is an in-
finite series which converges slowly (that is to say, which requires the consideration
of many terms), it requires a great deal of computation and yields little physical
insight. We will now put this solution into more useful form. The plan of attack is
to manipulate the series into a form where much of the infinite series can be summed
(i.e. written in closed form).

We consider the infinite series alone and perform long division:

. n + a p(cosO)= p(cosO) a/AP-(o )E " 'Pn (Cos ) = P (os ) - Pn (cos ) (26)
n= n + aA n-l n-l + aA

- Pn (cos Z) - A_1) I Pn (cos 0)

/,,(PO 1.(cos) (27)

(a/A) a/ -1 n(n + a/A)
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which can be rewritten

±Qo/~)a/A)-lPn(2 ,,=- o/A)

E P (Cos ) + a/A E
/ -______ 1 2 n -c I6) (28)

+ (a/A) a/A - I (os - (a/A)' a/A - ) ( +a/)

The first two of these infinite series can be summed in closed form by simple ma-
nipulation of the infinite series which generates Legendre polynomials (see Wheelon,
1968, p. 53):

n y- csc2 /2
P / (osO)= - -+ csc /2 + 2-- a/A ln + csc /2

n-1 ~~~~~_~aA \/\/ lcs /2 (29)

(a/A)- a) = P, (os6) + (a/ 21 a P, (os6)
I /) n2 (a/A) 2 -a/A n2(n + a/A)

Thus, it is only necessary to compute the last two infinite series in equation (29). The
first of these infinite series has the useful property that it depends only on the elec-
trode separation and is independent of the properties of the cell, namely the radius
and the generalized space constant. Thus, this series need be evaluated only once
for each angle and yet is still applicable to all cells. This series was summed for
those angles shown in Table I on a Hewlett-Packard 9100A desk calculator (which
has an accuracy of 10 significant figures) using the tables of P, (cos 0) of Clark and
Churchill (1957). Sufficient numbers of terms were used so as to ensure the signifi-
cance of the least significant digit in all cases. In no case should the figures be in
error by more than 40.005. The sums for = 0° and 1800 are known in closed
form, and thus for those cases our summation procedure could be checked.

Since we are concerned only with cases in which the generalized space constant
is larger than the cell radius (that is, a/A < 1), the final infinite series in equation
(29) would be expected to be relatively insignificant and we will now examine the
error involved in ignoring this term. We will consider the sum

(a/A) - a/A P, (os ( 30)
n1 n8

which is clearly always larger than the sum of interest for a/A < 1. Thus, the error
we compute is an upper bound. This sum is largest in magnitude for 0 = 0°, in which
case the value of the sum is (since P,(1) = 1) (Wheelon, 1968, p. 7)

(a/A)2 a/A) E 1.202(a/A)2 (1-a/A) (31)

The relative error in equation (29) produced by dropping the last infinite series
term is thus always less than this figure. In particular, for a/A the largest error
is 2.2% (when a/A = 1/3).
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APPENDIX 2

Time-Dependent Cases

In this Appendix we will develop the methods by which the solution to the steady-
state problem described in Appendix 1 and in the text can be easily generalized to
time-dependent problems. The methods involved lean heavily on the method of
Laplace transforms which we do not have space to develop or justify. (We have
found the treatment of Laplace transforms in Clark (1962) to be particularly useful.)
The first part of the Appendix describes the method of computing the time response
to a step function of current and the second part describes the response to a steady
sinusoidal excitation.

Part 1. Step Function Current

In physiological problems the only property of the system which causes the time
dependence of the voltage response is the capacitance of the surface membrane, since
the cytoplasm has no time-dependent properties. Thus, the partial differential equa-
tion which describes the electric field within the cytoplasm is the same whether time-
dependent or steady-state fields are considered. The boundary condition is different
in the two cases, however. (See Eisenberg and Johnson, 1970, sect. III, for an exten-
sive discussion of this point.) The boundary condition used in deriving the steady-
state solution was

an + ( 32)
Ri On R,

where the partial derivative signifies the partial derivative in the direction at right
angles to the membrane.7 The first term of this equation represents the current flow-
ing in the interior of the cell up to the membrane whereas the second term is the
steady-state expression for the current crossing the membrane. If we consider the
membrane to be a thin sheet of dielectric material, the appropriate expression for
the time-dependent boundary condition includes the capacitive current which crosses
the membrane

1 v av
-=0+ + C F (33)R. dn Rm + t

If the equivalent circuit of the membrane is more complicated than that implicit in
equation (33) (usually because of infoldings of the membrane: see Falk and Fatt,
1964; Eisenberg, 1967), a more complicated expression is necessary to describe the
current flowing through the membrane, but a development analogous to ours is
always possible.

The partial differential equation which describes the potential inside the cyto-

7? We should point out that if this equation is written in more general terms, using n/a as the spatial
variable, the ratio a/A appears immediately as the coefficient of the V term. Fundamentally, that is
why the ratio a/A occurs in virtually all our solutions, and in solutions to similar problems in other
geometries.
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plasm is Laplace's equation

1 a 0v I a O, I O I
2 ( d)+2- da (sin 0 -v) + -=0 ( 34)

r2 Or r r sin 0 T rl sin2 (034)

here written in spherical coordinates; two angles 0, and a radius r (see for example
Morse and Feshbach, 1953, p. 1264). We shall solve the time-dependent problem
by taking the Laplace transform of both the boundary conditions and the above
partial differential equation. That is to say, we multiply both equations by e-8 t and
integrate from zero to infinity. We use the notation L{v(t) = V(s) to denote the
Laplace transform of the function v(t) and define the transform as

L{v(t)} = (s) = I v(t)e- t dt (35)

Our procedure will then be to find the transform of the equation and boundary con-
ditions, solve these transformed equations for V(s), and then determine from a table
of Laplace transforms (for example, Roberts and Kaufman, 1966) that function of
time v(t) which corresponds to the transform of the voltage V(s).

The Laplace transform of our boundary condition (32) is (assuming no initial
charge on the capacitor)

I V (sC,± = 1/R) 36)

and the transform of the differential equation is

1 a rV sI a .r 2 s in d I 2V
-2 <t ) aJ+ -s sin - + -=0 (37)r2 Or Tr Or) rzsin 0 O r2 sin' 0o

We notice immediately that the resulting equation and boundary condition are
identical with the steady-state equations if we replace v(t) and i(t) with their Lap-
lace transforms V and i and if we write (/Rm, sCm) = C(s + 1I/RC) wher-
ever 1/R. appeared in the steady-state case.s Thus, the solution of the transformed
differential equation is identical with the solution of the steady-state equation if we
perform these same replacements. The Laplace transform of the voltage is thus
given by

- __ _ _ _ ziRi X (n + )P (cos )
41ra2C,(s + 1/RC) 2+ ra -l n + aRCm(s + 1/R,C,) (38)

(which we have derived by making the above mentioned substitution in equation
[10]). In order to proceed further we must specify the particular wave form of the
current. If we are considering only a step function of current of magnitude io starting

8 This expression is often called the membrane admittance ym 
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at time t = 0, the transform of the current is

L{i(t)} = i(s) = io/s (39)

Then the Laplace transform of the voltage is l/s times the right-hand side of equa-
tion (39) and we can determine v(t) from tables (Roberts and Kaufman, 1966,
equation 1-2, p. 181).

v(t) iRm1 etRc} + Ri n + 2

47ra2 27raR n n + a/A (40)

*P, (cos 0)[1 - exp { (-t/RmCm)(1 + nA/a)}]

This is the exact expression for the voltage as a function of time following a step func-
tion of current. A useful and accurate approximation can be made if we remember
that in the physiological case A/a is typically large, of the order of tens of thousands.
Then, it is easy to see that at times of physiological interest the three-dimensional term
(that is to say, the infinite series in equation [40]) has reached its steady-state value.
Thus, to a good approximation (about 1% for times greater than 5RmCm/{ 1 + A/a})
the time-dependent solution is

v(t) 1 = 2 e-tlRCm + 2(a/A) n Pr (cos P 6 (41 )T·ara n- n + aA

The infinite series can be considerably simplified as shown in Appendix 1. Thus,

v(t) i= oR {(a/A,8) + L(t)} (42)
4ra2

where

~4(a/A, ) = (1 - 2a/A)(1 + (a/A)D - (a/A)2 E) + (a/A) csc 0/2 - 1

~LQ~~) 1= I~ e~~-t ~~lt(43)L(t) = 1 - -t tR"C e

and the symbols are defined in equation (2).
It is interesting to note that the longest time constant involved in the establishment

of the three-dimensional field is approximately

RmCm(l + a/A) RC,(a/A) = RiCa (44)

which physically is the time constant of a circuit consisting of the membrane capaci-
tance 4ra2Cm in series with a resistance Ri/4ra.

Part 2. The Solution for Steady Sinusoidal Currents

The equation given above for the solution of our problem for time-dependent currents
(equation [38]) is applicable to a wide variety of excitations, including most functions
of physical interest. A particular type of excitation which is very useful in determining
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the form of the equivalent circuit is steady sinusoidal current of the form (i, sin cot,
where is 2r times the frequency. The Laplace transform of this current is
ipo/(s2 + w2) and thus the Laplace transform of the voltage can be found by substitut-
ing in equation (38):

W oR ,_i_ 1V = 47a I
47ra2 RC.(s + I/RmC)(s + jw)(s - jw)

~~~~~~~+ (2a/A)~ (ni ~c(45)
n- (2a/A) {n + aRiC.(s + /RmC.)}(s + j)(s jw)

It may seem that in order to determine the voltage response to sinusoidal excitation
it is sufficient to take the inverse transform of this expression. However, this procedure
would be cumbersome since the Laplace transform implicitly assumes all excitations
to start at time zero and thus the solution determined by taking the inverse transform
would contain several terms which die away with time and are not necessary to de-
scribe the steady response to sinusoidal excitation. It is conventional and most con-
venient to eliminate these brief lived transient terms before we determine the inverse
transform. The method for eliminating these terms consists of making a partial fraction
expansion of equation (45) and dropping the terms (details are described in Clark
[p. 309]) corresponding to the transients. We thus obtain the steady-state equation

4-2 1+ (n + /) ) (cos 0)>
47ra n-i n + aRizm (46)

(46)

zm jcC + l/Rm

which is simply the equation for the transform of the voltage (equation (38) above
with s set equal to jo (j is the symbol used for the /--). From here on it is necessary
to treat V explicitly as a function with complex values. The complex variable V(jo)
contains all the information necessary to specify the steady-state response of the net-
work to sinusoidal excitation and thus it is never necessary to determine the inverse
transform of V(j). In particular, the phase angle between the current and voltage is
the phase angle of the complex number V(jw) (the phase of the excitation is taken as
zero) and the magnitude of the voltage response (the peak value of the sinusoidal
voltage) is given by the magnitude of the complex number V(jw). Finally, the fre-
quency of the voltage and the wave form of the voltage is the same as that of the
sinusoidal applied current (Zadeh and Desoer, 1963, p. 418).

This equation (46) describing the sinusoidal response is of precisely the same form
as the equation which specifies the steady-state response to a step function of current
(see equation [10]). Thus, our analysis of the Dc case is applicable to the discussion of
the magnitude of the voltage changes produced by sinusoidal currents, provided we
use the rules of complex algebra for manipulating the expression.
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